Chapter 3. Matrices

Matrix and Operations of Matrices 1 Mark Questions

1. If
$$2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$
, then find
(x - y). Delhi 2014

Given,
$$2\begin{bmatrix} 3 & 4 \\ 5 & x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 6 & 8 \\ 10 & 2x \end{bmatrix} + \begin{bmatrix} 1 & y \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 7 & 8 + y \\ 10 & 2x + 1 \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 10 & 5 \end{bmatrix}$$

On comparing the corresponding elements, we get

8 + y = 0 and 2x + 1 = 5
⇒ y = -8 and x =
$$\frac{5-1}{2} = 2$$

∴ x - y = 2 - (-8) = 10 (1)

2. Solve the following matrix equation for *x*.

$$\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$$
 Delhi 2014

Get More Learning Materials Here :

We have, $\begin{bmatrix} x & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -2 & 0 \end{bmatrix} = 0$

By using matrix multiplication, we get

$$[x-2 \quad 0] = [0 \quad 0]$$

On comparing the corresponding elements from both sides, we get

$$x - 2 = 0 \Rightarrow x = 2 \tag{1}$$

3. If A is a square matrix such that $A^2 = A$, then write the value of $7A - (I + A)^3$, where I is an identity matrix. All India 2014

We have,
$$A^{2} = A$$

Now,
 $7A - (l + A)^{3} = 7A - [l^{3} + A^{3} + 3lA (l + A)]$
 $[::(x + y)^{3} = x^{3} + y^{3} + 3xy (x + y)]$
 $= 7A - [l + A^{2} \cdot A + 3A (l + A)]$ $[::l^{3} = I]$
 $= 7A - [l + A \cdot A + 3Al + 3A^{2}] [::A^{2} = A, given]$
 $= 7A - [l + A + 3A + 3A]$ $[::Al = A]$
 $= 7A - [l + A + 3A + 3A]$ $[::Al = A]$

4. If
$$\begin{bmatrix} x - y & z \\ 2x - y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$
, then find the value of $x + y$.
All India 2014

We have,
$$\begin{bmatrix} x - y & z \\ 2x - y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$

On comparing the corresponding elements, we get

Given,
$$\begin{bmatrix} a+4 & 3b \\ 8 & -6 \end{bmatrix} = \begin{bmatrix} 2a+2 & b+2 \\ 8 & a-8b \end{bmatrix}$$

We know that two matrices are equal, if its corresponding elements are equal.

$$\therefore$$
 $a + 4 = 2a + 2$... (i)

$$3b = b + 2$$
 ...(ii)
-6 = a - 8b ...(iii)

and -6 = a - 8b

On solving Eqs. (i), (ii) and (iii), we get

$$a = 2$$
 and $b = 1$
Now, $a - 2b = 2 - 2$ (1) $= 2 - 2 = 0$ (1)

Get More Learning Materials Here : 💵

6. If
$$\begin{bmatrix} x \cdot y & 4 \\ z + 6 & x + y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$$
, write the value of $(x + y + z)$. Delhi 2014C

Given,
$$\begin{bmatrix} x \cdot y & 4 \\ z + 6 & x + y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$$

We know that, if two matrices are equal, then their corresponding elements are equal.

$$\therefore \qquad x \cdot y = 8 \Longrightarrow y = \frac{8}{x} \qquad \dots (i)$$

$$z + 6 = 0 \Longrightarrow z = -6$$
 ...(ii)

x + y = 6 ...(iii)

(1/2)

Now, put the value of y from Eq. (i), in Eq. (iii), we get

 $x + \frac{8}{x} = 6$ $\Rightarrow \qquad x^2 + 8 = 6x$ $\Rightarrow \qquad (x - 4) (x - 2) = 0$ $\Rightarrow \qquad x = 4, 2$

and

On putting the values of x in Eq. (iii), we get

y = 2, 4Now, (x + y + z) = (2 + 4 - 6) = 0 (1/2)

Get More Learning Materials Here :

7. The elements a_{ij} of a 3 \times 3 matrix are given

by $a_{ij} = \frac{1}{2} |-3i + j|$. Write the value of element a_{32} . All India 2014C

Given, for a 3×3 matrix.

$$a_{ij}=\frac{1}{2}\left|-3i+j\right|$$

Here, element a_{32} denotes the element of third row corresponding to second column. So, to find a_{32} , put i = 3 and j = 2, we get

$$a_{32} = \frac{1}{2} |-3 \times 3 + 2|$$

= $\frac{1}{2} |-9 + 2|$
= $\frac{7}{2}$ (1)

8. If $\begin{bmatrix} 2x & 4 \end{bmatrix} \begin{bmatrix} x \\ -8 \end{bmatrix} = 0$, find the positive value of x. All India 2014C

We have,
$$[2x 4] \begin{bmatrix} x \\ -8 \end{bmatrix} = 0$$

 $\Rightarrow (2x^2 - 32) = 0$
 $\Rightarrow 2x^2 = 32$
 $\Rightarrow x^2 = 16$
 $\Rightarrow x = \pm 4$
 \therefore Positive value of $x = 4$. (1)
9. If $2 \begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$, then find the value of $(x + y)$.
Delhi 2013C: All India 2012

> Firstly, multiply each element of the first matrix by 2, then use property of matrix addition and equality of matrices, to calculate the values of x and y. Given, $2\begin{vmatrix} 1 & 3 \\ 0 & x \end{vmatrix} + \begin{vmatrix} y & 0 \\ 1 & 2 \end{vmatrix} = \begin{vmatrix} 5 & 6 \\ 1 & 8 \end{vmatrix}$ $\Rightarrow \qquad \begin{bmatrix} 2 & 6 \\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$ $\begin{bmatrix} 2+y & 6\\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8 \end{bmatrix}$ \Rightarrow (1/2)On comparing corresponding elements, we 2 + y = 5 and 2x + 2 = 8get v = 3 and 2x = 6 \Rightarrow v = 3 and x = 3 \Rightarrow x + y = 3 + 3 = 6... (1/2)**10.** Find the value of a, if $\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 0 & 13 \end{bmatrix}$ Delhi 2013 $\langle \rangle$ Use the definition of equality of matrices. We know that two matrices are equal, if their corresponding elements are equal. (1/2)*.*.. a - b = -1...(i) 2a - b = 0and ...(ii) On subtracting Eq. (i) from Eq. (ii), we get a = 1(1/2)**11.** If $\begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} = A + \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix}$, then find the matrix A. Delhi 2013

CLICK HERE

(>>

Given matrix equation can be rewritten as

$$A = \begin{bmatrix} 9 & -1 & 4 \\ -2 & 1 & 3 \end{bmatrix} - \begin{bmatrix} 1 & 2 & -1 \\ 0 & 4 & 9 \end{bmatrix}$$
(1/2)
$$\Rightarrow \qquad A = \begin{bmatrix} 9-1 & -1-2 & 4+1 \\ -2-0 & 1-4 & 3-9 \end{bmatrix}$$

[two matrices can be subtracted only when their orders are same]

$$= \begin{bmatrix} 8 & -3 & 5 \\ -2 & -3 & -6 \end{bmatrix}$$
 (1/2)

12. If matrix
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 and $A^2 = kA$, then write

the value of k.

All India 2013

Given,
$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 ...(i)
and $A^2 = kA$

Now,
$$A^2 = A \cdot A$$
 ...(ii)

$$= \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1+1 & -1-1 \\ -1-1 & 1+1 \end{bmatrix}$$
Imultiplying row by column

$$\begin{bmatrix} \text{multiplying row by column} \\ = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \quad (1/2)$$

$$a^{2} = 2A \qquad \qquad [\text{ from Eq. (i)}]$$

 $\Rightarrow A^2 = 2A$

On comparing with Eq. (ii) we get

CLICK HERE

>>>

13. If matrix $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ and $A^2 = pA$, then write the value of *p*. All India 2013

Given, $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$...(i) $A^2 = pA$...(ii) and Now, $A^2 = A \cdot A$ $=\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ $=\begin{bmatrix} 4+4 & -4-4 \\ -4-4 & 4+4 \end{bmatrix}$ [multiplying row by column] $= \begin{vmatrix} 8 & -8 \\ -8 & 8 \end{vmatrix}$ (1/2) $=4\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ $A^{2} = 4A$ [from Eq.(i)] => On comparing with Eq. (ii), we get (1/2)p=4**14.** If matrix $A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$ and $A^2 = \lambda A$, then write the value of λ . All India 2013 Given, matrix $A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$...(i) Also, $A^2 = \lambda A$...(ii) Now, $A^2 = A \cdot A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$ $= \begin{bmatrix} 9+9 & -9-9 \\ -9-9 & 9+9 \end{bmatrix}$ [multiplying row by column]

$$= \begin{bmatrix} 18 & -18 \\ -18 & 18 \end{bmatrix} = \begin{bmatrix} 6 \cdot 3 & -6 \cdot 3 \\ -6 \cdot 3 & 6 \cdot 3 \end{bmatrix}$$
$$= 6 \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$$
(1/2)

$$\Rightarrow \lambda A = 6A \text{ [from Eqs. (i) and (ii)]}$$

$$\therefore \lambda = 6 \text{ (1/2)}$$

15. Simplify

$$\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}.$$

Delhi 2012; HOTS

Firstly, we multiply each element of the first matrix by $\cos\theta$ and second matrix by $\sin\theta$ and then using the matrix addition.

We have,

$$\cos\theta \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta \begin{bmatrix} \sin\theta & -\cos\theta \\ \cos\theta & \sin\theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^2\theta & \sin\theta \cos\theta \\ -\sin\theta \cos\theta & \cos^2\theta \end{bmatrix}$$
$$+ \begin{bmatrix} \sin^2\theta & -\sin\theta \cos\theta \\ \sin\theta \cos\theta & \sin^2\theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos^2\theta + \sin^2\theta \\ -\sin\theta \cos\theta + \sin\theta \cos\theta \\ \sin\theta \cos\theta - \sin\theta \cos\theta \\ \cos^2\theta + \sin^2\theta \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad [\because \sin^2\theta + \cos^2\theta = 1]$$
$$= I = \text{unit matrix} \qquad (1)$$

Get More Learning Materials Here : 💵

16. Find the value of y - x from following equation

$$2\begin{bmatrix} x & 5 \\ 7 & y - 3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}.$$

All India 2012

We have,

$$2 \begin{bmatrix} x & 5 \\ 7 & y-3 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2x & 10 \\ 14 & 2y-6 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix} - \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 2x & 10 \\ 14 & 2y-6 \end{bmatrix} = \begin{bmatrix} 7-3 & 6+4 \\ 15-1 & 14-2 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 10 \\ 14 & 12 \end{bmatrix}$$
(1/2)

On equating the corresponding elements, we get

$$2x = 4 \text{ and } 2y - 6 = 12$$

$$\Rightarrow \qquad x = 2 \text{ and } 2y = 18$$

$$\Rightarrow \qquad x = 2 \text{ and } y = 9$$

$$\therefore \qquad y - x = 9 - 2 = 7 \qquad (1/2)$$

$$[2] \qquad [-1] \qquad [10]$$

17. If
$$x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$
, then write the value of
x. Foreign 2012

Get More Learning Materials Here : 💴

We have,
$$x \begin{bmatrix} 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

$$\Rightarrow \qquad \begin{bmatrix} 2x \\ 3x \end{bmatrix} + \begin{bmatrix} -y \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

$$\Rightarrow \qquad \begin{bmatrix} 2x \\ 3x \end{bmatrix} + \begin{bmatrix} -y \\ y \end{bmatrix} = \begin{bmatrix} 10 \\ 5 \end{bmatrix}$$

On comparing corresponding elements, we get

2x - y = 10, 3x + y = 5

On adding both equations, we get

$$5x = 15 \implies x = 3 \tag{1}$$

18. If $3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, then find the matrix A. **Delhi 2012C** Given $B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$ and $3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$

$$\Rightarrow 3A = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix} + B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix} + \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$$
$$\begin{bmatrix} \text{put } B = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} 5+4 & 3 \\ 1+2 & 1+5 \end{bmatrix} = \begin{bmatrix} 9 & 3 \\ 3 & 6 \end{bmatrix} = 3 \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$

On comparing both sides, we get

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 2 \end{bmatrix}$$
(1)

19. Write the value of x - y + z from following equation

$$\begin{bmatrix} x + y + z \\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$$
 Foreign 2011

>>

CLICK HERE

Use the definition of equality of matrices i.e. if two matrices are equal, then their corresponding elements are equal.

Given matrix equation is

and

$$\begin{bmatrix} x + y + z \\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \\ 7 \end{bmatrix}$$

On equating the corresponding elements, we get

x + y + z = 9	(i)		
x + z = 5	(ii)		
v + z = 7	(iii)		

On putting the value of x + z from Eq. (ii) in Eq. (i), we get

 $y + 5 = 9 \implies y = 4$

On putting y = 4 in Eq. (iii), we get z = 3

Again, putting z = 3 in Eq. (ii), we get x = 2

Now, x - y + z = 2 - 4 + 3 = 1(1)

20. Write the order of product matrix

>>>

 \bigcirc Use the fact that if a matrix A has order $m \times n$ and other matrix B has order $n \times z$, then the matrix AB has order $m \times z$, that means if number of columns of matrix A is same as number of rows of matrix B, then matrix multiplication AB is possible.

Let
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$

Here, order of matrix $A = 3 \times 1$

and order of matri $x B = 1 \times 3$

: Order of product matrix $AB = 3 \times 3$ (1)

21. If a matrix has 5 elements, then write all possible orders it can have. All India 2011

 \bigcirc Use the result that a matrix has order $m \times n$, then total number of elements in that matrix is mn.

Given a matrix has 5 elements. So, possible order of this matrix are $5 \times 1, 1 \times 5$. (1)

22. For a 2 × 2 matrix, $A = [a_{ij}]$ whose elements are given by $a_{ij} = i/j$, write the value of a_{12} .

Delhi 2011

Given, for a 2×2 matrix,

$$A = [a_{ij}], a_{ij} = \frac{i}{i}$$

To find a_{12} , put i = 1 and j = 2, we get

$$a_{12} = \frac{1}{2}$$
 (1)

23. If $\begin{bmatrix} x & x-y \\ 2x+y & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 8 & 7 \end{bmatrix}$, then find the value of y. Delhi 2011C

Given,
$$\begin{bmatrix} x & x-y \\ 2x+y & 7 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 8 & 7 \end{bmatrix}$$

On comparing corresponding elements, we get

$$x = 3 \text{ and } x - y = 1 \implies y = x - 1 = 3 - 1 = 2$$
 (1)

24. From the following matrix equation, find the value of *x*.

$$\begin{bmatrix} x+y & 4 \\ -5 & 3y \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -5 & 6 \end{bmatrix}$$
 Foreign 2010

Do same as Que 10.

[Ans. 1]

25. Find x from the matrix equation

$$\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}.$$
 Foreign 2010; HOTS

Firstly, we calculate the multiplication of matrices in LHS and then equate the corresponding elements of both sides.

Given matrix equation is $\begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} \begin{bmatrix} x \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} x+6 \\ 4x+10 \end{bmatrix} = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$

[multiplying row by column] On equating the corresponding elements, we get

x + 6 = 5 $\Rightarrow \qquad x = -1 \tag{1}$

26. If $\begin{bmatrix} 3 & 4 \\ 2 & x \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} 19 \\ 15 \end{bmatrix}$, then find the value of x. Foreign 2010; HOTS

Do same as Que 25. [Ans. 5]

27. If $A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$, then for what value of α , A is an identity matrix? Delhi 2010; HOTS

Firstly, we put the given matrix A equal to an identity matrix and then equate the corresponding elements to get the value of
$$\alpha$$
.

Given,
$$A = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

For A to be an identity matrix, we must have

 $\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \because & l = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ On equating element a_{11} from both sides, we get $\cos \alpha = 1$

$$\Rightarrow \cos \alpha = \cos 0^{\circ} \quad [\because \cos 0^{\circ} = 1]$$

$$\therefore \qquad \alpha = 0^{\circ}$$

So, for $\alpha = 0^{\circ}$, A is an identity matrix.

 $[:: \sin 0^\circ = 0]$ (1)

>>

28. If $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$, then write the value of k. Delhi 2010 Given,

 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$ $\Rightarrow \begin{bmatrix} 3+4 & 1+10 \\ 9+8 & 3+20 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$ [multiplying row by column] $\Rightarrow \begin{bmatrix} 7 & 11 \\ 17 & 23 \end{bmatrix} = \begin{bmatrix} 7 & 11 \\ k & 23 \end{bmatrix}$

On equating element a_{21} from both sides, we get 17 = k

$$\Rightarrow \qquad k=17 \qquad (1)$$

29. If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, then find order of matrix (AB).
 Delhi 2010C

Order of matrix $AB = 3 \times 3$

[if a matrix A has order $x \times y$ and B has order $y \times z$, then matrix AB has order $x \times z$](1)

30. If
$$\begin{bmatrix} x + y & 1 \\ 2y & 5 \end{bmatrix} = \begin{bmatrix} 7 & 1 \\ 4 & 5 \end{bmatrix}$$
, then find the value of x. Delhi 2010C

Get More Learning Materials Here : 📁

Given matrix equation is $\begin{vmatrix} x+y & 1 \\ 2y & 5 \end{vmatrix} = \begin{vmatrix} 7 & 1 \\ 4 & 5 \end{vmatrix}$ On equating the corresponding elements, we get ...(i) x + y = 7...(ii) 2v = 4and From Eq. (ii), we get $y = \frac{4}{2} = 2$ On putting the value of y in Eq. (i), we get x + 2 = 7x = 5(1) \Rightarrow **31.** If $\begin{bmatrix} 2x + y & 3y \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}$, then find the value of All India 2010C X. Do same as Que 30. [Ans. x = 3] **32.** If $\begin{bmatrix} 3y - x & -2x \\ 3 & 7 \end{bmatrix} = \begin{bmatrix} 5 & -2 \\ 3 & 7 \end{bmatrix}$, then find the value All India 2010C Do same as Que 30. [Ans. y = 2] **33.** If $\begin{bmatrix} 2x & 1 \\ 5 & x+2y \end{bmatrix} = \begin{bmatrix} 4 & 1 \\ 5 & 0 \end{bmatrix}$, then find the value of v. All India 2009C Do same as Que 30. [Ans. y = -1] **34.** If $\begin{bmatrix} y+2x & 5\\ -x & 3 \end{bmatrix} = \begin{bmatrix} 7 & 5\\ -2 & 3 \end{bmatrix}$, then find the value of v. Foreign 2009 Do same as Que 30. [Ans. y = 3]

Get More Learning Materials Here : 📷

35. Find the value of x, if

$$\begin{bmatrix} 3x + y & -y \\ 2y - x & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -5 & 3 \end{bmatrix}$$

All India 2009

Do same as Que 30. [Ans. x = 1]

NOTE Sometimes on solving an equation, we get more than one values of one variable. This means that such a matrix does not exist.

36. Find the value of y, if
$$\begin{bmatrix} x - y & 2 \\ x & 5 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 3 & 5 \end{bmatrix}$$
.
All India 2009

Do same as Que 30. [Ans. y = 1]

37. Find the value of x, if
$$\begin{bmatrix} 2x - y & 5 \\ 3 & y \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 3 & -2 \end{bmatrix}$$
All India 2009

Do same as Que 30. [Ans. x = 2]

38. If
$$\begin{bmatrix} 15 & x+y \\ 2 & y \end{bmatrix} = \begin{bmatrix} 15 & 8 \\ x-y & 3 \end{bmatrix}$$
, then find the value of x. Delhi 2009C

Do same as Que 30. [Ans. *x* = 5]

39. If
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$, then find $A - B$.
All india 2008C

Get More Learning Materials Here : 🂵 🗲

For finding A – B, subtracting the corresponding elements.

Given,
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$
 $\therefore \quad A - B = \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 1 & 3 \\ -2 & 5 \end{bmatrix}$
 $= \begin{bmatrix} 2 - 1 & 4 - 3 \\ 3 - (-2) & 2 - 5 \end{bmatrix}$
 $= \begin{bmatrix} 1 & 1 \\ 5 & -3 \end{bmatrix}$ (1)
40. If $\begin{bmatrix} x + 2y & 3y \\ 4x & 2 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 8 & 2 \end{bmatrix}$, then find x and y.
All India 2008C
Do same as Que 30. [Ans. $x = 2, y = 1$]
41. Find x and y, if $2 \begin{bmatrix} 1 & 3 \\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 1 & 8 \end{bmatrix}$.
Delhi 2008: HOTS

Do same as Que 9. [**Ans.** *x* = 3, *y* = 3]

4 Marks Questions

42. If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, then find value of $A^2 - 3A + 2I$. All India 2010

Get More Learning Materials Here :

Given,
$$A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$

We have to find the value of $A^2 - 3A + 2I$.
Now, $A^2 = A \cdot A$
$$= \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 4+0+1 & 0+0-1 & 2+0+0 \\ 4+2+3 & 0+1-3 & 2+3+0 \\ 2-2+0 & 0-1-0 & 1-3+0 \end{bmatrix}$$
[multiplying row by column]

Get More Learning Materials Here : 📕

.

$$\Rightarrow A^{2} = \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{bmatrix}$$
(1½)

$$3A = 3 \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 0 & 3 \\ 6 & 3 & 9 \\ 3 & -3 & 0 \end{bmatrix}$$
(1/2)
and $2I = 2 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (1/2)

$$\therefore A^{2} - 3A + 2I$$

$$= \begin{bmatrix} 5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2 \end{bmatrix} - \begin{bmatrix} 6 & 0 & 3 \\ 6 & 3 & 9 \\ 3 & -3 & 0 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

$$\Rightarrow A^{2} - 3A + 2I$$

$$= \begin{bmatrix} 5 - 6 + 2 & -1 - 0 + 0 & 2 - 3 + 0 \\ 9 - 6 + 0 & -2 - 3 + 2 & 5 - 9 + 0 \\ 0 - 3 + 0 & -1 + 3 + 0 & -2 - 0 + 2 \end{bmatrix}$$

$$\Rightarrow A^{2} - 3A + 2I = \begin{bmatrix} 1 & -1 & -1 \\ 3 & -3 & -4 \\ -3 & 2 & 0 \end{bmatrix}$$
(1½)

$$43. \text{ If } A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \text{ then prove that } A^{2} - 4A - 5I = 0. \text{ Delhi 2008}$$

Get More Learning Materials Here : 🚅

Given,
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

$$\therefore A^{2} = A \cdot A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 + 4 + 4 & 2 + 2 + 4 & 2 + 4 + 2 \\ 2 + 2 + 4 & 4 + 1 + 4 & 4 + 2 + 2 \\ 2 + 2 + 4 & 4 + 1 + 4 & 4 + 2 + 2 \\ 2 + 4 + 2 & 4 + 2 + 2 & 4 + 4 + 1 \end{bmatrix} = \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}$$
Now, LHS = $A^{2} - 4A - 5I$

$$= \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 2 \\ 2 & 2 & 1 \end{bmatrix} - 5 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
(1)
$$= \begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix} + \begin{bmatrix} -4 & -8 & -8 \\ -8 & -4 & -8 \\ -8 & -8 & -4 \end{bmatrix} + \begin{bmatrix} -5 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O = \text{RHS}$$
 (1½) Hence proved.

Get More Learning Materials Here : 📕

r www.studentbro.in

Transpose of a Matrix and Symmetric Matrix

1 Mark Questions

 Write 2 × 2 matrix which is both symmetric and skew-symmetric matrices. Delhi 2014C

A null matrix of order 2×2 is both symmetric and skew-symmetric matrices.

For a symmetric matrix,

$$a_{ij} = a_{ji} \qquad \dots (i)$$

and for a skew-symmetric matrix,

$$a_{ij} = -a_{ji}$$
 ...(ii)

- From Eqs. (i) and (ii), we get $a_{ij} = 0$ (1)
- 2. For what value of x, is the matrix

$$A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$$
 a skew-symmetric matrix?

All India 2013: HOTS

Get More Learning Materials Here : 🚅

If A is a skew-symmetric matrix, then $A = -A^T$, where A^T is transpose of matrix A.

Given,
$$A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$$

We know that, if A is a skew-symmetric matrix, then $A = -A^T$...(i)

From Eq. (i), we get

$$\begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix} = -\begin{bmatrix} 0 & -1 & x \\ 1 & 0 & -3 \\ -2 & 3 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & -x \\ -1 & 0 & 3 \\ 2 & -3 & 0 \end{bmatrix}$$
(1/2)

On comparing the corresponding element, we get

$$x = 2$$
 (1/2)

3. If
$$A^{T} = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then find $A^{T} - B^{T}$.
All India 2012

Given,
$$B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$$

Transpose of $B = B^T = \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$ (1/2)
Now, $A^T - B^T = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1 \\ 2 & 2 \\ 1 & 3 \end{bmatrix}$
 $= \begin{bmatrix} 3+1 & 4-1 \\ -1-2 & 2-2 \\ 0-1 & 1-3 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ -3 & 0 \\ -1 & -2 \end{bmatrix}$ (1/2)
4. If $A = \begin{bmatrix} 1 & 2 \\ -2 & -1 \end{bmatrix}$, then find $A + A'$.

If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, then find $A + A'$.
All India 2010C

Firstly, we find the transpose of matrix A and then add the corresponding elements of both matrices A and A'.

Given,
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

 \therefore $A' = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$
Now, $A + A' = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 5 & 8 \end{bmatrix}$ (1)
5. If $A = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}$, then find $A + A'$, where A' is
transpose of A . All India 2009C
Do same as Que 4. $\begin{bmatrix} Ans. \begin{bmatrix} 6 & 6 \\ 6 & 6 \end{bmatrix} \end{bmatrix}$
6. If matrix $A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, then write AA' .

Delhi 2009; HOTS

Get More Learning Materials Here : 🌉

CLICK HERE

Firstly, we write the transpose of matrix A of order 1×3 , whose order is 3×1 , then multiply if matrix multiplication is possible to get required answer.

Given, matrix is
$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

 $\therefore \qquad A' = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
Now, $AA' = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
 $= \begin{bmatrix} (1 \times 1) + (2 \times 2) + (3 \times 3) \end{bmatrix}$
 $= \begin{bmatrix} 1 + 4 + 9 \end{bmatrix} = \begin{bmatrix} 14 \end{bmatrix}$ (1)

4 Mark Questions

7. For the following matrices A and B, verify that $\begin{bmatrix} AB \end{bmatrix}' = B'A'; \quad A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$ All india 2010 Given, $A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$ To verify (AB)' = B'A'Here, $AB = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}_{3 \times 1}^{a} \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$ $\Rightarrow AB = \begin{bmatrix} -1 & 2 & 1 \\ 4 & -8 & -4 \\ -3 & 6 & 3 \end{bmatrix}$ [multiplying row by column]

Get More Learning Materials Here : 📕

$$\therefore \quad LHS = (AB)' = \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix} \quad \dots (i)$$

[interchanging rows and columns] (11/2)

Now,
$$B' = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$
 and $A' = \begin{bmatrix} 1 & -4 & 3 \end{bmatrix}$ (1)
 \therefore RHS = $B'A' = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & -4 & 3 \end{bmatrix}$
 $= \begin{bmatrix} -1 & 4 & -3 \\ 2 & -8 & 6 \\ 1 & -4 & 3 \end{bmatrix}$...(ii)

[multiplying row by column](1)

(1/2)

From Eqs. (i) and (ii), we get

(AB)' = B'A'LHS = RHS

8. Express the following matrix as a sum of a symmetric and a skew-symmetric matrices and verify your result.

$$\begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$$
 All India 2010; HOTS

Get More Learning Materials Here : 📕

...

Get More Learning Materials Here : 📕

and
$$Q' = \frac{1}{2} \begin{bmatrix} -5 & 0 & 0 \\ -3 & -6 & 0 \end{bmatrix}$$

 $= -\frac{1}{2} \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix}$
 $= -Q$
 $\Rightarrow Q' = -Q$
 $\Rightarrow Q' = -Q$
 $\therefore Q \text{ is a skew-symmetric matrix. (1)}$
Now,
 $P + Q = \frac{1}{2} \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix}$
 $= \frac{1}{2} \left\{ \begin{bmatrix} 6 & 1 & -5 \\ 1 & -4 & -4 \\ -5 & -4 & 4 \end{bmatrix} + \begin{bmatrix} 0 & -5 & -3 \\ 5 & 0 & -6 \\ 3 & 6 & 0 \end{bmatrix} \right\}$
 $= \frac{1}{2} \begin{bmatrix} 6 & -4 & -8 \\ 6 & -4 & -10 \\ -2 & 2 & 4 \end{bmatrix}$
 $= \frac{1}{2} \begin{bmatrix} 6 & -4 & -8 \\ 6 & -4 & -10 \\ -2 & 2 & 4 \end{bmatrix}$
 $= \begin{bmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \\ -1 & 1 & 2 \end{bmatrix}$
Thus, $P + Q = A$ (1)

Get More Learning Materials Here : 🗾

R www.studentbro.in

Inverse of a Matrix byElementary Operations

Previous Year Examination Question

4 Marks Questions

1. Use elementary column operations $C_2 \rightarrow C_2 - 2C_1$ in the matrix equation

4	2	1	2	2	0
3	3	=[o	3	1	1]

Foreign 2014

We write the matrix A as A = AI for applying elementary column operations. So, apply column operation on the matrix of LHS and on the second matrix of RHS.

Given matrix equation is

$$\begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

On applying $C_2 \rightarrow C_2 - C_1$, we get

$$\begin{bmatrix} 4 & 2 - 8 \\ 3 & 3 - 6 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 - 4 \\ 1 & 1 - 2 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 4 & -6 \\ 3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & -4 \\ 1 & -1 \end{bmatrix}$$

which is the required answer.

2. Using elementary row transformation (ERT),
find inverse of matrix
$$A = \begin{bmatrix} 6 & 5 \\ 5 & 4 \end{bmatrix}$$
.
Foreign 2010; HOTS

CLICK HERE

>>

Firstly, put A = IA. Then, by applying elementary row transformation on A of LHS and I of RHS, convert this matrix in the form I = BA, where B gives the inverse of A. Given matrix is $A = \begin{bmatrix} 6 & 5 \\ 5 & 4 \end{bmatrix}$. Let A = IA $\begin{bmatrix} 6 & 5 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} A$ (1/2)Applying $R_1 \rightarrow R_1 - R_2$, we get $\begin{bmatrix} 1 & 1 \\ 5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} A$ (1)Applying $R_2 \rightarrow R_2 - 5R_1$, we get $\begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -5 & 6 \end{bmatrix} A$ (1) Applying $R_1 \rightarrow R_1 + R_2$, we get $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -4 & 5 \\ -5 & 6 \end{bmatrix} A$ (1/2)Now, applying $R_2 \rightarrow (-1)R_2$, we get $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -4 & 5 \\ 5 & -6 \end{bmatrix} A$ (1/2)Hence, $A^{-1} = \begin{bmatrix} -4 & 5 \\ 5 & -6 \end{bmatrix} \begin{bmatrix} \because A^{-1}A = I \end{bmatrix}$ (1/2) 3. Find A⁻¹, by using elementary row transformation for matrix $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$

Foreign 2010

Do same as Que 2.
$$\begin{bmatrix} Ans. A^{-1} = \begin{bmatrix} 5 & -2 \\ -7 & 3 \end{bmatrix}$$

Get More Learning Materials Here :

 4. Using elementary row transformation, find inverse of matrix $A = \begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$. Delhi 2010 Do same as Que 2. $\begin{bmatrix} Ans. A^{-1} = \begin{bmatrix} 3 & -5 \\ -1 & 2 \end{bmatrix} \end{bmatrix}$

6 Marks Questions

5. $\begin{bmatrix} -1 & 1 \\ 1 & 2 \\ 3 & 1 \end{bmatrix}$	2 2 3 1	-	с.	Delhi 2012
Given ma	atrix is A=	-1 1 1 2 3 1	2 3 1	
Let	<i>A</i> =	IA		
\Rightarrow	$\begin{bmatrix} -1 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} =$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	A	(1)
Applying	$R_2 \rightarrow R_2 + R_2$	$R_3 \rightarrow R_3$	$+3R_{1}$,	we get
	$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 5 \\ 0 & 4 & 7 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A	(1)
Applying	$R_1 \rightarrow (-1) R_1$	we get		
[1 0 0	$\begin{bmatrix} -1 & -2 \\ 3 & 5 \\ 4 & 7 \end{bmatrix} = \begin{bmatrix} -1 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\$	-1 0 0 1 1 0 3 0 1		

CLICK HERE

(>>

Applying
$$R_2 \to R_2 - R_3$$
, we get

$$\begin{bmatrix}
1 & -1 & -2 \\
0 & -1 & -2 \\
0 & 4 & 7
\end{bmatrix} = \begin{bmatrix}
-1 & 0 & 0 \\
-2 & 1 & -1 \\
3 & 0 & 1
\end{bmatrix} A$$
(1)

Applying $R_1 \rightarrow R_1 - R_2$ and $R_3 \rightarrow R_3 + 4R_2$, we get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 1 & -1 \\ -5 & 4 & -3 \end{bmatrix} A$$
(1)

Applying $R_2 \rightarrow (-1) R_2$, we get

[1	0	0		[1	-1	1	
0	1	2	=	2	-1	1	A
0	0	-1_		-5	4	-3_	

Applying $R_2 \rightarrow R_2 + 2 R_3$, we get

[1	0	0		1	-1	1]	
0	1	0	=	-8	7	-5	A	(1)
0	0	-1_		_5	4	-3_		

Applying
$$R_3 \rightarrow (-1) R_3$$
, we get

$$\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
1 & -1 & 1 \\
-8 & 7 & -5 \\
5 & -4 & 3
\end{bmatrix} A$$

which is of the form I = BA.

Hence,
$$A^{-1} = \begin{bmatrix} 1 & -1 & 1 \\ -8 & 7 & -5 \\ 5 & -4 & 3 \end{bmatrix}$$
 (1)
6. $\begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ Foreign 2011

Given matrix is
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$$
.
Let $A = IA$
 $\Rightarrow \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ (1)
Applying $R_1 \rightarrow 3R_1$, we get
 $\begin{bmatrix} 6 & 0 & -3 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ (1/2)

Get More Learning Materials Here : 📕

Applying $R_1 \rightarrow R_1 - R_2$, we get $\begin{vmatrix} 1 & -1 & -3 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} A$ (1)Applying $R_1 \rightarrow R_1 + R_3$, we get $\begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$ (1/2)Applying $R_2 \rightarrow R_2 - 5R_1$, we get $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 3 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 0 & 0 & 1 \end{vmatrix} A$ (1) Applying $R_3 \rightarrow R_3 - R_2$, we get $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 15 & -6 & 6 \end{vmatrix} A (1/2)$ Applying $R_3 \rightarrow \frac{1}{2} R_3$, we get $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{vmatrix} A (1/2)$ $A^{-1} = \begin{vmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{vmatrix}$ Hence, (1) **7.** $\begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ -3 & 1 & 0 \end{bmatrix}$ Delhi 2010

Get More Learning Materials Here : 📕

CLICK HERE

Given matrix is
$$A = \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$$
. (1)

$$\Rightarrow \begin{bmatrix} 1 & 3 & -2 \\ -3 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$
(1)

Applying $R_2 \rightarrow R_2 + 3R_1$ and $R_3 \rightarrow R_3 - 2R_1$, we get

$$\begin{bmatrix} 1 & 3 & -2 \\ 0 & 9 & -7 \\ 0 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} A$$
(1)

Get More Learning Materials Here : 📕

Applying $R_2 \rightarrow \frac{\kappa_2}{\alpha}$, we get $\begin{vmatrix} 1 & 3 & -2 \\ 0 & 1 & -7/9 \\ 0 & -5 & 4 \end{vmatrix} = \begin{vmatrix} 1/3 & 1/9 & 0 \\ -2 & 0 & 1 \end{vmatrix} A (1/2)$ Applying $R_3 \rightarrow R_3 + 5R_2$, we get $\begin{vmatrix} 1 & 3 & -2 \\ 0 & 1 & -7/9 \\ 0 & 0 & 1/9 \end{vmatrix} = \begin{vmatrix} 1/3 & 1/9 & 0 \\ -1/3 & 5/9 & 1 \end{vmatrix} A(1/2)$ Applying $R_3 \rightarrow 9R_3$, we get $\begin{vmatrix} 1 & 3 & -2 \\ 0 & 1 & -7/9 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1/3 & 1/9 & 0 \\ -3 & 5 & 9 \end{vmatrix} A (1/2)$ Applying $R_1 \rightarrow R_1 - 3R_2$, we get $\begin{vmatrix} 1 & 0 & 1/3 \\ 0 & 1 & -7/9 \\ 0 & 0 & -1/3 & 0 \\ -1/3 & 1/9 & 0 \\ -1/3 & 1/9 & 0 \\ -1/3 & 1/9 & 0 \\ -1/3 &$ Applying $R_1 \rightarrow R_1 - \frac{1}{2}R_3$ and $R_2 \rightarrow R_2 + \frac{7}{6}R_3$, we get $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} -2 & 4 & 7 \\ -2 & 5 & 9 \end{vmatrix} A$ Hence, $A^{-1} = \begin{bmatrix} 1 & -2 & -3 \\ -2 & 4 & 7 \\ 2 & 5 & 0 \end{bmatrix}$ (1) All India 2010

CLICK HERE

Do same as Que 7. $\begin{bmatrix} Ans. A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix} \end{bmatrix}$ 9. $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 4 & 1 \end{bmatrix}$ All India 2009 Do same as Que 7. $\begin{bmatrix} Ans. A^{-1} = \begin{bmatrix} 3 & -4 & 3 \\ -2 & 3 & -2 \\ 8 & -12 & 9 \end{bmatrix} \end{bmatrix}$ 10. $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ -2 & -4 & -5 \end{bmatrix}$ All India 2008 All India 2008 All India 2008

Get More Learning Materials Here : 📕

